Autor: |
Hyun Su Park, Yong Woo Park, Oh Hoon Kwon, Shin Hyoung Park |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Journal of Advanced Transportation, Vol 2022 (2022) |
Druh dokumentu: |
article |
ISSN: |
2042-3195 |
DOI: |
10.1155/2022/1107048 |
Popis: |
This study developed and verified a travel speed prediction model based on the travel speed and work zone statistics collected from the advanced traffic management system (ATMS) real-time data in Daegu, South Korea. A clustered K-nearest neighbors (CKNN) algorithm was used to predict travel speed, resulting in a 6.9% average mean absolute percentage error (MAPE) using the data from 1,815 work zones. Furthermore, road network impact due to road work was calculated by comparing the travel speed prediction results obtained from the historical speed data. The predicted travel speed data in a work zone generated from this study is expected to allow drivers to select optimized paths and use them for traffic management strategies to operate in a work zone efficiently. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|