Autor: |
Romina J. Bevacqua, Weichen Zhao, Emilio Merheb, Seung Hyun Kim, Alexander Marson, Anna L. Gloyn, Seung K. Kim |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
iScience, Vol 27, Iss 1, Pp 108693- (2024) |
Druh dokumentu: |
article |
ISSN: |
2589-0042 |
DOI: |
10.1016/j.isci.2023.108693 |
Popis: |
Summary: Successful genome editing in primary human islets could reveal features of the genetic regulatory landscape underlying β cell function and diabetes risk. Here, we describe a CRISPR-based strategy to interrogate functions of predicted regulatory DNA elements using electroporation of a complex of Cas9 ribonucleoprotein (Cas9 RNP) and guide RNAs into primary human islet cells. We successfully targeted coding regions including the PDX1 exon 1, and non-coding DNA linked to diabetes susceptibility. CRISPR-Cas9 RNP approaches revealed genetic targets of regulation by DNA elements containing candidate diabetes risk SNPs, including an in vivo enhancer of the MPHOSPH9 gene. CRISPR-Cas9 RNP multiplexed targeting of two cis-regulatory elements linked to diabetes risk in PCSK1, which encodes an endoprotease crucial for Insulin processing, also demonstrated efficient simultaneous editing of PCSK1 regulatory elements, resulting in impaired β cell PCSK1 regulation and Insulin secretion. Multiplex CRISPR-Cas9 RNP provides powerful approaches to investigate and elucidate human islet cell gene regulation in health and diabetes. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|