On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I)

Autor: Vijai Kumar Pathak, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Dumitru Baleanu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Fractal and Fractional, Vol 6, Iss 12, p 744 (2022)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract6120744
Popis: This paper is concerned with the existence of the solution to mixed-type non-linear fractional functional integral equations involving generalized proportional (κ,ϕ)-Riemann–Liouville along with Erdélyi–Kober fractional operators on a Banach space C([1,T]) arising in biological population dynamics. The key findings of the article are based on theoretical concepts pertaining to the fractional calculus and the Hausdorff measure of non-compactness (MNC). To obtain this goal, we employ Darbo’s fixed-point theorem (DFPT) in the Banach space. In addition, we provide two numerical examples to demonstrate the applicability of our findings to the theory of fractional integral equations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje