The new neural pressure support (NPS) mode and the helmet: did we find the dynamic duo?

Autor: Alessandro Costa, Federico Merlo, Aline Pagni, Paolo Navalesi, Giacomo Grasselli, Gianmaria Cammarota, Davide Colombo
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal of Anesthesia, Analgesia and Critical Care, Vol 4, Iss 1, Pp 1-10 (2024)
Druh dokumentu: article
ISSN: 2731-3786
DOI: 10.1186/s44158-024-00170-6
Popis: Abstract Background Noninvasive ventilation (NIV) is commonly used in clinical practice to reduce intubation times and enhance patient comfort. However, patient-ventilator interaction (PVI) during NIV, particularly with helmet interfaces, can be challenging due to factors such as dead space and compliance. Neurally adjusted ventilatory assist (NAVA) has shown promise in improving PVI during helmet NIV, but limitations remain. A new mode, neural pressure support (NPS), aims to address these limitations by providing synchronized and steep pressurization. This study aims to assess whether NPS per se improves PVI during helmet NIV compared to standard pressure support ventilation (PSV). Methods The study included adult patients requiring NIV with a helmet. Patients were randomized into two arms: one starting with NPS and the other with PSV; the initial ventilatory parameters were always set as established by the clinician on duty. Physiological parameters and arterial blood gas analysis were collected during ventilation trials. Expert adjustments to initial ventilator settings were recorded to investigate the impact of the expertise of the clinician as confounding variable. Primary aim was the synchrony time (Timesync), i.e., the time during which both the ventilator and the patient (based on the neural signal) are on the inspiratory phase. As secondary aim neural-ventilatory time index (NVTI) was also calculated as Timesync divided to the total neural inspiratory time, i.e., the ratio of the neural inspiratory time occupied by Timesync. Results Twenty-four patients were enrolled, with no study interruptions due to safety concerns. NPS demonstrated significantly longer Timesync (0.64 ± 0.03 s vs. 0.37 ± 0.03 s, p
Databáze: Directory of Open Access Journals