A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
Autor: | M. Mohagheghy Nezhad, F. Rahbarnia, M. Mirzavaziri, R. Ghanbari |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Algebraic Systems, Vol 7, Iss 2, Pp 179-187 (2020) |
Druh dokumentu: | article |
ISSN: | 2345-5128 2345-511X |
DOI: | 10.22044/jas.2019.7367.1363 |
Popis: | The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Giving a characterization for those graphs whose metric dimensions are two, we enumerate the number of $n$ vertex metric two dimensional graphs with basic distance 1. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |