On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight

Autor: Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Cubo, Vol 26, Iss 1, Pp 107-122 (2024)
Druh dokumentu: article
ISSN: 0719-0646
DOI: 10.56754/0719-0646.2601.107
Popis: This paper is concerned with a class of fractional \(p(x,y)-\)Kirchhoff type problems with Dirichlet boundary data along with indefinite weight of the following form \begin{equation*} \left\lbrace\begin{array}{ll} M\left(\int_{Q}\frac{1}{p(x,y)}\frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}\,dx\,dy\right)\\ (-\triangle_{p(x)})^s+|u(x)|^{q(x)-2}u(x) & \\ =\lambda V(x)|u(x)|^{r(x)-2}u(x)& \text{in }\Omega,\\ u=0, & \text{in }\mathbb{R}^N\Omega. \end{array}\right. \end{equation*} By means of direct variational approach and Ekeland’s variational principle, we investigate the existence of nontrivial weak solutions for the above problem in case of the competition between the growth rates of functions \(p\) and \(r\) involved in above problem, this fact is essential in describing the set of eigenvalues of this problem.
Databáze: Directory of Open Access Journals