A 3D-Printed Bi-Material Bragg-Based Reflectarray Antenna

Autor: Walid Chekkar, Jerome Lanteri, Tom Malvaux, Julien Sourice, Leonardo Lizzi, Claire Migliaccio, Fabien Ferrero
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Sensors, Vol 24, Iss 20, p 6512 (2024)
Druh dokumentu: article
ISSN: 24206512
1424-8220
16467396
DOI: 10.3390/s24206512
Popis: This paper presents a 3D-printed fully dielectric bi-material reflectarray with bandgap characteristics for multi-band applications. To achieve bandgap characteristics, a “1D Bragg reflector” unit cell is used. The latter is a layered structure characterized by a spatial distribution of refractive index that varies periodically along one dimension. By appropriately selecting the dimensions, the bandgap can be shifted to cover the desired frequency bands. To validate this bandgap characteristic, a (121.5 mm × 121.5 mm) with an f/D ratio of 0.5 reflectarray was fabricated. The measured gain at 27 GHz is 27.22 dBi, equivalent to an aperture efficiency of 35.05%, demonstrating good agreement between simulated and measured performances within the frequency range of 26–30 GHz. Additionally, the transparency of the reflectarray was verified by measuring the transmission coefficient, which exhibited a high level of transparency of 0.32 dB at 39 GHz. These features make the proposed reflectarray a good candidate for multi-band frequency applications.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje