Комп’ютерний зір у вирішенні проблеми розпізнавання форми кубічного пельменя.

Autor: П. Голубков, Д. Путников, В. Егоров
Jazyk: English<br />Russian<br />Ukrainian
Rok vydání: 2020
Předmět:
Zdroj: Автоматизация технологических и бизнес-процессов, Vol 11, Iss 4, Pp 4-10 (2020)
Druh dokumentu: article
ISSN: 2312-3125
2312-931X
DOI: 10.15673/atbp.v11i4.1593
Popis: В статті вирішується задача розпізнавання форми продукції випускаємої новим комплексом обладнання з виробництва пельменної продукції особливої, кубічної форми. Випуск продукції складної важкореалізовуваної форми використовується для збільшення економічної складової і виключення підробок. При виготовленні товарів виникає ряд труднощів, які необхідно подолати. Однією з них є облягання фаршу з мінусовою температурою в тісто яке має кімнатну температуру. Провівши ряд активних експериментів з замороженим фаршем і теплим тістом, отримавши і обробивши отримані результати, ми прийшли до висновку, що створюване обладнання повинно мати не тільки систему автоматичного керування, що включає в себе можливість керувати комплексом, а й містити алгоритми, які дадуть можливість розраховувати за математичними моделями необхідну для підтримання властивостей тісту температуру. А також включити в можливості комплексу комп'ютерну обробку отриманої продукції і використовуючи сучасні технології комунікацій, забезпечити передачу інформації, яка буде доступна для віддаленої роботи як самого комплексу, так і інформації про вироблену ним продукцію. Використовуючи нову, важкореалізовану форму і сучасні технології, створений комплекс в майбутньому дасть можливість не тільки виробляти нову продукцію з формою захищеної від підробки, а й скоротити витрати виробництва. Ефективність буде обумовлена ще й в тому, що на продукцію такої форми, може бути підвищена ціна з міркування змісту в собі кращих інгредієнтів і можливість використання більш компактною упаковки. Так як в пачках маючих в собі напівфабрикати кубічної форми фактично буде відсутній вільне місце на відміну від сучасних пачок з пельменній продукцією, що містить до 20% повітря. Це, так само дасть приріст ефективності при зберіганні і переміщенні продукції. Варто звернути увагу ще і на те, що дане обладнання зможе виробляти нові види продукції напівфабрикатів, що включають в себе не тільки використовуються в даний час поширені інгредієнти, такі як свинина і яловичина, а й м'ясо птиці, риби і містити безліч різних рецептів фаршу і тіста. Що в свою чергу розширить асортимент виробляємої продукції напівфабрикатів. Кінцевою стадією приготування пельменя є його перевірка та відбраківка. Якщо форма пельменя відповідає регламенту, його відправляють на подальшу заморозку, в протилежному випадку, його відправляються на переробку, при цьому вноситься коригування у систему керування температурою нагріву. Сучасні комп’ютерні методи дозволяють отримувати ці дані з фото. Існує 3 методи обробки фото для виявлення необхідних властивостей: статичні методи, методи порівняння із зразком, нейронні мережі. У роботі розглядається розпізнавання пельменя з використанням бібліотеки відкритого доступу OpenCV, яка вже має безліч функцій розпізнавання та постійно дописується новими.
Databáze: Directory of Open Access Journals