Parameter–Elliptic Fourier Multipliers Systems and Generation of Analytic and C∞ Semigroups

Autor: Bienvenido Barraza Martínez, Jonathan González Ospino, Rogelio Grau Acuña, Jairo Hernández Monzón
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 5, p 751 (2022)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10050751
Popis: We consider Fourier multiplier systems on Rn with components belonging to the standard Hörmander class S1,0mRn, but with limited regularity. Using a notion of parameter-ellipticity with respect to a subsector Λ⊂C (introduced by Denk, Saal, and Seiler) we show the generation of both C∞ semigroups and analytic semigroups (in a particular case) on the Sobolev spaces WpkRn,Cq with k∈N0, 1≤p<∞ and q∈N. For the proofs, we modify and improve a crucial estimate from Denk, Saal and Seiler, on the inverse matrix of the symbol (see Lemma 2). As examples, we apply the theory to solve the heat equation, a linear thermoelastic plate equation, a structurally damped plate equation, and a generalized plate equation, all in the whole space, in the frame of Sobolev spaces.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje