Cracking Elements Method for Simulating Complex Crack Growth

Autor: Zizheng Sun, Xiaoying Zhuang, Yiming Zhang
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Applied and Computational Mechanics, Vol 5, Iss Special Issue: Computational Methods for Material Failure, Pp 552-562 (2019)
Druh dokumentu: article
ISSN: 2383-4536
DOI: 10.22055/jacm.2018.27589.1418
Popis: The cracking elements method (CEM) is a novel numerical approach for simulating fracture of quasi-brittle materials. This method is built in the framework of conventional finite element method (FEM) based on standard Galerkin approximation, which models the cracks with disconnected cracking segments. The orientation of propagating cracks is determined by local criteria and no explicit or implicit representations of the cracks' topology are needed. CEM does not need remeshing technique, cover algorithm, nodal enrichment or specific crack tracking strategies. The crack opening is condensed in local element, greatly reducing the coding efforts and simplifying the numerical procedure. This paper presents numerical simulations with CEM regarding several benchmark tests, the results of which further indicate the capability of CEM in capturing complex crack growths referring propagations of existed cracks as well as initiations of new cracks.
Databáze: Directory of Open Access Journals