Autor: |
Maria Rosaria Sellitto, Chiara Amante, Rita Patrizia Aquino, Paola Russo, Rosalía Rodríguez-Dorado, Monica Neagu, Carlos A. García-González, Renata Adami, Pasquale Del Gaudio |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Gels, Vol 9, Iss 6, p 492 (2023) |
Druh dokumentu: |
article |
ISSN: |
2310-2861 |
DOI: |
10.3390/gels9060492 |
Popis: |
The production of aerogels for different applications has been widely known, but the use of polysaccharide-based aerogels for pharmaceutical applications, specifically as drug carriers for wound healing, is being recently explored. The main focus of this work is the production and characterization of drug-loaded aerogel capsules through prilling in tandem with supercritical extraction. In particular, drug-loaded particles were produced by a recently developed inverse gelation method through prilling in a coaxial configuration. Particles were loaded with ketoprofen lysinate, which was used as a model drug. The core-shell particles manufactured by prilling were subjected to a supercritical drying process with CO2 that led to capsules formed by a wide hollow cavity and a tunable thin aerogel layer (40 μm) made of alginate, which presented good textural properties in terms of porosity (89.9% and 95.3%) and a surface area up to 417.0 m2/g. Such properties allowed the hollow aerogel particles to absorb a high amount of wound fluid moving very quickly (less than 30 s) into a conformable hydrogel in the wound cavity, prolonging drug release (till 72 h) due to the in situ formed hydrogel that acted as a barrier to drug diffusion. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|