Autor: |
Andrea Adriani, Stefano Serra-Capizzano, Cristina Tablino-Possio |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Algorithms, Vol 17, Iss 3, p 100 (2024) |
Druh dokumentu: |
article |
ISSN: |
1999-4893 |
DOI: |
10.3390/a17030100 |
Popis: |
We consider the Helmholtz equation and the fractional Laplacian in the case of the complex-valued unbounded variable coefficient wave number μ, approximated by finite differences. In a recent analysis, singular value clustering and eigenvalue clustering have been proposed for a τ preconditioning when the variable coefficient wave number μ is uniformly bounded. Here, we extend the analysis to the unbounded case by focusing on the case of a power singularity. Several numerical experiments concerning the spectral behavior and convergence of the related preconditioned GMRES are presented. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|