Clustering/Distribution Analysis and Preconditioned Krylov Solvers for the Approximated Helmholtz Equation and Fractional Laplacian in the Case of Complex-Valued, Unbounded Variable Coefficient Wave Number μ

Autor: Andrea Adriani, Stefano Serra-Capizzano, Cristina Tablino-Possio
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Algorithms, Vol 17, Iss 3, p 100 (2024)
Druh dokumentu: article
ISSN: 1999-4893
DOI: 10.3390/a17030100
Popis: We consider the Helmholtz equation and the fractional Laplacian in the case of the complex-valued unbounded variable coefficient wave number μ, approximated by finite differences. In a recent analysis, singular value clustering and eigenvalue clustering have been proposed for a τ preconditioning when the variable coefficient wave number μ is uniformly bounded. Here, we extend the analysis to the unbounded case by focusing on the case of a power singularity. Several numerical experiments concerning the spectral behavior and convergence of the related preconditioned GMRES are presented.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje