Cytotoxic activity of crude extracts from Datura stramonium’s fungal endophytes against A549 lung carcinoma and UMG87 glioblastoma cell lines and LC-QTOF-MS/MS based metabolite profiling

Autor: Kudzanai Ian Tapfuma, Nkemdinma Uche-Okereafor, Tendani Edith Sebola, Raeesa Hussan, Lukhanyo Mekuto, Maya Mellisa Makatini, Ezekiel Green, Vuyo Mavumengwana
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: BMC Complementary and Alternative Medicine, Vol 19, Iss 1, Pp 1-12 (2019)
Druh dokumentu: article
ISSN: 1472-6882
DOI: 10.1186/s12906-019-2752-9
Popis: Abstract Background Endophytic fungi are a proven source of bioactive secondary metabolites that may provide lead compounds for novel drug discovery. In this study, crude extracts from fungal endophytes isolated from Datura stramonium were evaluated for cytotoxic activity on two human cancer cell lines. Methods Fungal endophytes were isolated from surface sterilized aerial parts of D. stramonium and identified using molecular, morphological and phylogenetic methods. Ethyl acetate crude extracts from these isolates were evaluated for cytotoxic activity on A549 lung carcinoma and UMG87 glioblastoma cell lines. Metabolite profiling was then performed by liquid chromatography coupled to quadrupole time-of-flight with tandem mass spectrometry (LC-QTOF-MS/MS) for the cytotoxic crude extract. Results Eleven fungal endophytes were identified from D. stramonium. Significant cytotoxicity was only observed from the crude extract of Alternaria sp. KTDL7 on UMG87 glioblastoma cells (IC50 = 21.49 μg/ml). Metabolite profiling of this crude extract tentatively revealed the presence of the following secondary metabolites: 1,8-dihydroxynaphthalene (1), anserinone B (2), phelligridin B (3), metacytofilin (4), phomopsidin (5) and vermixocin A (6). Compounds 2 and 3 have been shown to be cytotoxic in literature. Conclusion The findings in this study suggest that the crude extract of Alternaria sp. KTDL7 possesses compound(s) cytotoxic to glioblastoma multiforme cells. Future studies to isolate and characterize the cytotoxic compound(s) from this fungus could result in lead development of a fungal-based drug for glioblastoma multiforme treatment.
Databáze: Directory of Open Access Journals