Regulation of ghrelin receptor by microbial and inflammatory signals in human osteoblasts

Autor: Marjan Nokhbehsaim, Andressa Vilas Boas Nogueira, Svenja Memmert, Anna Damanaki, Sigrun Eick, Joni Augusto Cirelli, James Deschner
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Brazilian Oral Research, Vol 33, Iss 0 (2019)
Druh dokumentu: article
ISSN: 1807-3107
DOI: 10.1590/1807-3107bor-2019.vol33.0025
Popis: Abstract: Recently, it has been suggested that the anti-inflammatory hormone ghrelin (GHRL) and its receptor GHS-R may play a pivotal role in periodontal health and diseases. However, their exact regulation and effects in periodontitis are not known. The aim of this in-vitro study was to investigate the effect of microbial and inflammatory insults on the GHS-R1a expression in human osteoblast-like cells. MG-63 cells were exposed to interleukin (IL)-1β and Fusobacterium nucleatum in the presence and absence of GHRL for up to 2 d. Subsequently, gene expressions of GHS-R1a, inflammatory mediators and matrix metalloproteinase were analyzed by real-time PCR. GHS-R protein synthesis and NF-κB p65 nuclear translocation were assessed by immunocytochemistry and immunofluorescence microscopy, respectively. IL-1β and F. nucleatum caused a significant upregulation of GHS-R1a expression and an increase in GHS-R1a protein. Pre-incubation with a MEK1/2 inhibitor diminished the IL-1β-induced GHS-R1a upregulation. IL-1β and F. nucleatum also enhanced the expressions of cyclooxygenase 2, CC-chemokine ligand 2, IL-6, IL-8, and matrix metalloproteinase 1, but these stimulatory effects were counteracted by GHRL. By contrast, the stimulatory actions of IL-1β and F. nucleatum on the GHS-R1a expression were further enhanced by GHRL. Our study provides original evidence that IL-1β and F. nucleatum regulate the GHS-R/GHRL system in osteoblast-like cells. Furthermore, we demonstrate for the first time that the proinflammatory and proteolytic actions of IL-1β and F. nucleatum on osteoblast-like cells are inhibited by GHRL. Our study suggests that microbial and inflammatory insults upregulate GHS-R1a, which may represent a protective negative feedback mechanism in human bone.
Databáze: Directory of Open Access Journals