Cluster analysis successfully identifies clinically meaningful knee valgus moment patterns: frequency of early peaks reflects sex-specific ACL injury incidence

Autor: Haraldur B. Sigurðsson, Kristín Briem
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Experimental Orthopaedics, Vol 6, Iss 1, Pp 1-12 (2019)
Druh dokumentu: article
ISSN: 2197-1153
93494726
DOI: 10.1186/s40634-019-0205-5
Popis: Abstract Background Biomechanical studies of ACL injury risk factors frequently analyze only a fraction of the relevant data, and typically not in accordance with the injury mechanism. Extracting a peak value within a time series of relevance to ACL injuries is challenging due to differences in the relative timing and size of the peak value of interest. Aims/hypotheses The aim was to cluster analyze the knee valgus moment time series curve shape in the early stance phase. We hypothesized that 1a) There would be few discrete curve shapes, 1b) there would be a shape reflecting an early peak of the knee valgus moment, 2a) youth athletes of both sexes would show similar frequencies of early peaks, 2b) adolescent girls would have greater early peak frequencies. Methods N = 213 (39% boys) youth soccer and team handball athletes (phase 1) and N = 35 (45% boys) with 5 year follow-up data (phase 2) were recorded performing a change of direction task with 3D motion analysis and a force plate. The time series of the first 30% of stance phase were cluster analyzed based on Euclidean distances in two steps; shape-based main clusters with a transformed time series, and magnitude based sub-clusters with body weight normalized time series. Group differences (sex, phase) in curve shape frequencies, and shape-magnitude frequencies were tested with chi-squared tests. Results Six discrete shape-clusters and 14 magnitude based sub-clusters were formed. Phase 1 boys had greater frequency of early peaks than phase 1 girls (38% vs 25% respectively, P
Databáze: Directory of Open Access Journals