Data-Based Engine Torque and NOx Raw Emission Prediction

Autor: Zheng Yuan, Xiuyong Shi, Degang Jiang, Yunfang Liang, Jia Mi, Huijun Fan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Energies, Vol 15, Iss 12, p 4346 (2022)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en15124346
Popis: Low accuracy is the main challenge that plagues the application of engine modeling technology at present. In this paper, correlation analysis technology is used to analyze the main influencing factors of engine torque and NOx (nitrogen oxides) raw emission performance from a statistical point of view, and on this basis, the regression algorithm is used to construct the engine torque and NOx emission prediction model. The prediction RMSE between engine torque prediction value and true value reaches 4.6186, and the torque prediction R2 reaches 1.00. Prediction RMSE between NOx emission prediction value and true value reaches 67.599, and NOx emission prediction R2 reaches 0.99. When using the new WHTC data for model prediction verification, the RMSE between the engine torque predicted value and true value reaches 4.9208, and the prediction accuracy reaches 99.60%, the RMSE between NOx emission prediction value and true value reaches 72.38, and the prediction accuracy reaches 99.2%, indicating that the model is relatively accurate. The evaluation result of the ambient temperature impact on torque shows that ambient temperature is positively correlated with engine torque.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje