Synthesis of BiOI/Mordenite Composites for Photocatalytic Treatment of Organic Pollutants Present in Agro-Industrial Wastewater
Autor: | Alejandra Gallegos-Alcaíno, Nathaly Robles-Araya, Camila Avalos, Alexander Alfonso-Alvarez, Carlos A. Rodríguez, Héctor Valdés, Norma A. Sánchez-Flores, Juan C. Durán-Alvarez, Monserrat Bizarro, Francisco J. Romero-Salguero, Adriana C. Mera |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Nanomaterials, Vol 12, Iss 7, p 1161 (2022) |
Druh dokumentu: | article |
ISSN: | 12071161 2079-4991 |
DOI: | 10.3390/nano12071161 |
Popis: | Recently, bismuth oxyiodide (BiOI) is an attractive semiconductor to use in heterogeneous photocatalysis processes. Unfortunately, BiOI individually shows limited photocatalytic efficiency, instability, and a quick recombination of electron/holes. Considering the practical application of this semiconductor, some studies show that synthetic zeolites provide good support for this photocatalyst. This support material permits a better photocatalytic efficiency because it prevents the quick recombination of photogenerated pairs. However, the optimal conditions (time and temperature) to obtain composites (BiOI/ synthetic zeolite) with high photocatalytic efficiency using a coprecipitation-solvothermal growth method have not yet been reported. In this study, a response surface methodology (RSM) based on a central composite design (CCD) was applied to optimize the synthesis conditions of BiOI/mordenite composites. For this purpose, eleven BiOI/mordenite composites were synthesized using a combined coprecipitation-solvothermal method under different time and temperature conditions. The photocatalytic activities of the synthesized composites were evaluated after 20 min of photocatalytic oxidation of caffeic acid, a typical organic pollutant found in agro-industrial wastewater. Moreover, BiOI/mordenite composites with the highest and lowest photocatalytic activity were physically and chemically characterized using nitrogen adsorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and diffuse reflectance spectroscopy (DRS). The optimal synthesis conditions prove to be 187 °C and 9 h. In addition, the changes applied to the experimental conditions led to surface property modifications that influenced the photocatalytic degradation efficiency of the BiOI/mordenite composite toward caffeic acid photodegradation. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |