The Asymptotic Statistics of Random Covering Surfaces
Autor: | Michael Magee, Doron Puder |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Forum of Mathematics, Pi, Vol 11 (2023) |
Druh dokumentu: | article |
ISSN: | 2050-5086 |
DOI: | 10.1017/fmp.2023.13 |
Popis: | Let $\Gamma _{g}$ be the fundamental group of a closed connected orientable surface of genus $g\geq 2$ . We develop a new method for integrating over the representation space $\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$ , where $S_{n}$ is the symmetric group of permutations of $\{1,\ldots ,n\}$ . Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |