Randomly stopped sums with consistently varying distributions
Autor: | Edita Kizinevič, Jonas Sprindys, Jonas Šiaulys |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Modern Stochastics: Theory and Applications, Vol 3, Iss 2, Pp 165-179 (2016) |
Druh dokumentu: | article |
ISSN: | 2351-6046 2351-6054 |
DOI: | 10.15559/16-VMSTA60 |
Popis: | Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables, and η be a counting random variable independent of this sequence. We consider conditions for $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of consistently varying distributions. In our consideration, the random variables $\{\xi _{1},\xi _{2},\dots \}$ are not necessarily identically distributed. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |