Randomly stopped sums with consistently varying distributions

Autor: Edita Kizinevič, Jonas Sprindys, Jonas Šiaulys
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Modern Stochastics: Theory and Applications, Vol 3, Iss 2, Pp 165-179 (2016)
Druh dokumentu: article
ISSN: 2351-6046
2351-6054
DOI: 10.15559/16-VMSTA60
Popis: Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables, and η be a counting random variable independent of this sequence. We consider conditions for $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of consistently varying distributions. In our consideration, the random variables $\{\xi _{1},\xi _{2},\dots \}$ are not necessarily identically distributed.
Databáze: Directory of Open Access Journals