Minimal Wave Speed in a Delayed Lattice Dynamical System with Competitive Nonlinearity

Autor: Fuzhen Wu
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Discrete Dynamics in Nature and Society, Vol 2019 (2019)
Druh dokumentu: article
ISSN: 1026-0226
1607-887X
DOI: 10.1155/2019/1950767
Popis: This paper deals with the minimal wave speed of delayed lattice dynamical systems without monotonicity in the sense of standard partial ordering in R2. By constructing upper and lower solutions appealing to the exponential ordering, we prove the existence of traveling wave solutions if the wave speed is not smaller than some threshold. The nonexistence of traveling wave solutions is obtained when the wave speed is smaller than the threshold. Therefore, we confirm the threshold is the minimal wave speed, which completes the known results.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje