Minimal Wave Speed in a Delayed Lattice Dynamical System with Competitive Nonlinearity
Autor: | Fuzhen Wu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Discrete Dynamics in Nature and Society, Vol 2019 (2019) |
Druh dokumentu: | article |
ISSN: | 1026-0226 1607-887X |
DOI: | 10.1155/2019/1950767 |
Popis: | This paper deals with the minimal wave speed of delayed lattice dynamical systems without monotonicity in the sense of standard partial ordering in R2. By constructing upper and lower solutions appealing to the exponential ordering, we prove the existence of traveling wave solutions if the wave speed is not smaller than some threshold. The nonexistence of traveling wave solutions is obtained when the wave speed is smaller than the threshold. Therefore, we confirm the threshold is the minimal wave speed, which completes the known results. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |