Popis: |
Atmospheric volatile organic compounds (VOCs), such as olefins and aromatics, released from synthetic chemical pesticide sprays can increase regional air pollution, public health risks, and food security risks. However, significant uncertainties remain regarding the measurement methods and chemical profiles of VOC emissions. Using an agricultural city, Changchun City in Northeast China, as a case study, we quantified real-time concentration and composition data based on online monitoring instruments for the year 2023. This study optimized data collection methods for emission factors and activity levels and developed a high-precision emission inventory of VOCs in pesticides at the city scale. The emission factors for VOCs from the seven categories of pesticides were estimated as follows: 78 g/kg (nicosulfuron and atrazine, oil-dispersible [OD] and suspension emulsion [SE], respectively), 4 g/kg (chlorpyrifos and indoxair conditioningarb, suspension concentrate [SC]), 5 g/kg (fluopicolide and propamocarb hydrochloride, SC), 217 g/kg (MCPA-dimethylammonium, aqueous solution [AS]), 34 g/kg (glyphosate, AS), 575 g/kg (beta-cypermethrin and malathion, emulsifiable concentrate [EC]), and 122 g/kg (copper abietate, emulsion in water [EW]), depending on the pesticide formulation components and formulation types. The orchard insecticide exhibited the highest emission factors among all pesticides owing to its emulsifiable concentrate formulation and 80% content of inactive ingredients (both factors contribute to the high content of organic solvents in the pesticide). The major components of VOC emissions from pesticide spraying were halocarbons (27–44%), oxygenated VOCs (OVOCs) (25–38%), and aromatic hydrocarbons (15–28%). The total VOC emissions from pesticide spraying in the Changchun region accounted for 10.6 t, with Yushu City contributing 28% of the VOC emissions and Gongzhuling City and Dehui City contributing 18.7% and 16.0%, respectively. Herbicides were the main contributors to VOC emissions because of their high emission factors and extensive use in fields (used for spraying maize and rice, the main crops in Changchun City). May and June exhibited the highest VOC emissions from pesticide application, with May accounting for 57.0% of annual pesticide emissions, predominantly from herbicides (95.1%), followed by insecticides (4.9%). June accounted for 30.1% of the annual pesticide emissions, with herbicides being the largest contributor of VOC emissions. An emission inventory of VOC with a monthly scale and spatial grid resolutions of 0.083° and 0.5° in 2023 was developed. These emission factors and inventories of pesticide applications provide valuable information for air quality modeling. This study also provides an important scientific basis for enhancing regional air quality and mitigating the environmental impact of pesticide use in major grain-producing areas. |