Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds

Autor: Maria Korshunova, Niles Huang, Stephen Capuzzi, Dmytro S. Radchenko, Olena Savych, Yuriy S. Moroz, Carrow I. Wells, Timothy M. Willson, Alexander Tropsha, Olexandr Isayev
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Communications Chemistry, Vol 5, Iss 1, Pp 1-11 (2022)
Druh dokumentu: article
ISSN: 2399-3669
DOI: 10.1038/s42004-022-00733-0
Popis: Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje