A multi-objective stacked regression method for distance based colour measuring device

Autor: Amrinder Singh Brar, Kawaljeet Singh
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-22 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-54785-4
Popis: Abstract Identifying colour from a distance is challenging due to the external noise associated with the measurement process. The present study focuses on developing a colour measuring system and a novel Multi-target Regression (MTR) model for accurate colour measurement from distance. Herein, a novel MTR method, referred as Multi-Objective Stacked Regression (MOSR) is proposed. The core idea behind MOSR is based on stacking as an ensemble approach with multi-objective evolutionary learning using NSGA-II. A multi-objective optimization approach is used for selecting base learners that maximises prediction accuracy while minimising ensemble complexity, which is further compared with six state-of-the-art methods over the colour dataset. Classification and regression tree (CART), Random Forest (RF) and Support Vector Machine (SVM) were used as regressor algorithms. MOSR outperformed all compared methods with the highest coefficient of determination values for all three targets of the colour dataset. Rigorous comparison with state-of-the-art methods over 18 benchmarked datasets showed MOSR outperformed in 15 datasets when CART was used as a regressor algorithm and 11 datasets when RF and SVM were used as regressor algorithms. The MOSR method was statistically superior to compared methods and can be effectively used to measure accurate colour values in the distance-based colour measuring device.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje