Autor: |
Pfensig Sylvia, Arbeiter Daniela, Kohse Stefanie, Grabow Niels, Schmitz Klaus-Peter, Kaule Sebastian, Stiehm Michael, Siewert Stefan |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Current Directions in Biomedical Engineering, Vol 5, Iss 1, Pp 569-572 (2019) |
Druh dokumentu: |
article |
ISSN: |
2364-5504 |
DOI: |
10.1515/cdbme-2019-0143 |
Popis: |
While the current generation of devices for minimally invasive treatment of severe symptomatic aortic valve stenosis is based on xenogenic leaflet-material, artificial polymeric leaflet-structures represent a promising approach for future improvement of heart valve performance. For enhanced long-term success of polymeric leafletstructures, limitations regarding calcification and durability have to be addressed. The objective of the presented study was the development of a constitutive law representing the material properties of artificial polymeric leaflet-structures of transcatheter heart valve prostheses in numerical simulation to assess the in silico leaflet-performance. Mechanical characterization of cast films and nonwoven specimens of a polycarbonate based silicone elastomer were conducted by means of uniaxial tension and planar shear testing, respectively. For validation purposes, experimental data were compared with the results of finite-element analysis (FEA) using different hyperelastic models. Strain energy function for third-order ogden hyperelastic model achieved the best fit of the non-linear stress-strain behavior of the isotropic polymeric material with the experimental data. It was chosen for further FEA of valve leaflet-performance under physiological pressurization to analyze the suitability of various manufacturing processes for polymeric leafletstructures. Therefore a specific leaflet-design with a wall thickness of 400 μm was used. As a result of FEA, time dependent leaflet-deformation, leaflet coaptation surface area (CSA) and leaflet opening area (LOA) of cast and nonwoven leaflet-structures were calculated. While LOA was comparable for cast and nonwoven leaflet-structures, obtained leaflet-dynamics in a cardiac cycle under physiological pressurization demonstrated crucial influence of the manufacturing process. For nonwoven leafletstructures, an enhanced CSA could be demonstrated in comparison to cast structures. FEA using a validated hyperelastic constitutive law represents a useful tool for in silico performance evaluation of polymeric leaflet-structures under physiological loading and proves the suitability of the polymeric artificial leaflet-material for percutaneous heart valve prostheses. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|