Autor: |
Chayaporn Suphavilai, Shumei Chia, Ankur Sharma, Lorna Tu, Rafael Peres Da Silva, Aanchal Mongia, Ramanuj DasGupta, Niranjan Nagarajan |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Genome Medicine, Vol 13, Iss 1, Pp 1-14 (2021) |
Druh dokumentu: |
article |
ISSN: |
1756-994X |
DOI: |
10.1186/s13073-021-01000-y |
Popis: |
Abstract While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-proximal cell lines, we established the validity of CaDRReS-Sc’s monotherapy (Pearson r>0.6) and combinatorial predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies. Availability: https://github.com/CSB5/CaDRReS-Sc . |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|