Kombinasi Seleksi Fitur Berbasis Filter dan Wrapper Menggunakan Naive Bayes pada Klasifikasi Penyakit Jantung
Autor: | Siti Roziana Azizah, Rudy Herteno, Andi Farmadi, Dwi Kartini, Irwan Budiman |
---|---|
Jazyk: | indonéština |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Jurnal Teknologi Informasi dan Ilmu Komputer, Vol 10, Iss 6 (2023) |
Druh dokumentu: | article |
ISSN: | 2355-7699 2528-6579 |
DOI: | 10.25126/jtiik.1067467 |
Popis: | Penyakit jantung menjadi salah satu penyebab utama kematian bersama dengan penyakit lainnya. Dalam bidang teknologi, data mining dapat digunakan untuk mendiagnosa suatu penyakit yang bersumber dari data rekam medis pasien. Pada klasifikasi dataset medis, Naive Bayes merupakan salah satu metode terbaik yang digunakan. Tujuan dari penelitian ini adalah untuk mengetahui perbandingan hasil akurasi dari Naive Bayes menggunakan beberapa seleksi fitur yaitu Forward Selection, Backward Elimination, kombinasi union hasil seleksi fitur Forwad Selection dan Backward Elimination, Information Gain, Gain Ratio, dan kombinasi union hasil seleksi fitur Information Gain dengan Gain Ratio. Data yang digunakan dalam penelitian ini adalah data penyakit jantung yang didapatkan dari UCI Machine Learning Repository. Dari implementasi pemodelan yang akan dilakukan menghasilkan nilai akurasi tertinggi sebesar 91.80% pada algoritma Naive Bayes dengan kombinasi union hasil seleksi fitur Information Gain dan Gain Ratio menggunakan perbandingan data latih dan data uji 80:20. Sedangkan akurasi Naive Bayes dengan kombinasi union hasil seleksi fitur Forward Selection dan Backward Elimination hanya memiliki nilai akurasi sebesar 83.61% Abstract Heart disease is one of the leading causes of death along with other diseases. In the field of technology, data mining can be used to diagnose a disease sourced from patient medical record data. In the classification of medical datasets, Naive Bayes is one of the best methods used. The purpose of this study is to determine the comparison of the accuracy results of Naive Bayes using several feature selections, namely Forward Selection, Backward Elimination, a combination of union of Forwad Selection and Backward Elimination feature selection results, Information Gain, Gain Ratio, and a combination of union of Information Gain feature selection results with Gain Ratio. The data used in this research is heart disease data obtained from the UCI Machine Learning Repository. From the implementation of modeling that will be carried out, the highest accuracy value is 91.80% in the Naive Bayes algorithm with a combination of union of Information Gain and Gain Ratio feature selection results using a ratio of training data and test data of 80:20. While the accuracy of Naive Bayes with a combination of union selection results of Forward Selection and Backward Elimination features only has an accuracy value of 83.61%. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |