Reconstructing cell cycle and disease progression using deep learning

Autor: Philipp Eulenberg, Niklas Köhler, Thomas Blasi, Andrew Filby, Anne E. Carpenter, Paul Rees, Fabian J. Theis, F. Alexander Wolf
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Nature Communications, Vol 8, Iss 1, Pp 1-6 (2017)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-017-00623-3
Popis: The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.
Databáze: Directory of Open Access Journals