Optimality and duality in set-valued optimization utilizing limit sets

Autor: Kong Xiangyu, Zhang Yinfeng, Yu GuoLin
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Open Mathematics, Vol 16, Iss 1, Pp 1128-1139 (2018)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2018-0095
Popis: This paper deals with optimality conditions and duality theory for vector optimization involving non-convex set-valued maps. Firstly, under the assumption of nearly cone-subconvexlike property for set-valued maps, the necessary and sufficient optimality conditions in terms of limit sets are derived for local weak minimizers of a set-valued constraint optimization problem. Then, applications to Mond-Weir type and Wolfe type dual problems are presented.
Databáze: Directory of Open Access Journals