Zwitterionic polymers-armored amyloid-like protein surface combats thrombosis and biofouling

Autor: Xiaohui Mou, Wan Miao, Wentai Zhang, Wenxuan Wang, Qing Ma, Zeyu Du, Xin Li, Nan Huang, Zhilu Yang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Bioactive Materials, Vol 32, Iss , Pp 37-51 (2024)
Druh dokumentu: article
ISSN: 2452-199X
DOI: 10.1016/j.bioactmat.2023.09.003
Popis: Proteins, cells and bacteria adhering to the surface of medical devices can lead to thrombosis and infection, resulting in significant clinical mortality. Here, we report a zwitterionic polymers-armored amyloid-like protein surface engineering strategy we called as “armored-tank” strategy for dual functionalization of medical devices. The “armored-tank” strategy is realized by decoration of partially conformational transformed LZM (PCTL) assembly through oxidant-mediated process, followed by armoring with super-hydrophilic poly-2-methacryloyloxyethyl phosphorylcholine (pMPC). The outer armor of the “armored-tank” shows potent and durable zone defense against fibrinogen, platelet and bacteria adhesion, leading to long-term antithrombogenic properties over 14 days in vivo without anticoagulation. Additionally, the “fired” PCTL from “armored-tank” actively and effectively kills both Gram-positive and Gram-negative bacterial over 30 days as a supplement to the lacking bactericidal functions of passive outer armor. Overall, this “armored-tank” surface engineering strategy serves as a promising solution for preventing biofouling and thrombotic occlusion of medical devices.
Databáze: Directory of Open Access Journals