Development of a novel micro-bead force spectroscopy approach to measure the ability of a thermo-active polymer to remove bacteria from a corneal model

Autor: J. Pattem, T. Swift, S. Rimmer, T. Holmes, S. MacNeil, J. Shepherd
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-021-93172-1
Popis: Abstract Microbial keratitis occurs from the infection of the cornea by fungi and or bacteria. It remains one of the most common global causes of irreversible blindness accounting for 3.5% (36 million) of blind people as of 2015. This paper looks at the use of a bacteria binding polymer designed to bind Staphylococcus aureus and remove it from the corneal surface. Mechanical unbinding measurements were used to probe the interactions of a thermo-active bacteria-binding polymer, highly-branched poly(N-isopropyl acrylamide), functionalised with modified vancomycin end groups (HB-PNIPAM-Van) to bacteria placed on rabbit corneal surfaces studied ex-vivo. This was conducted during sequential temperature phase transitions of HB-PNIPAM-Van-S. aureus below, above and below the lower critical solution temperature (LCST) in 3 stages, in-vitro, using a novel micro-bead force spectroscopy (MBFS) approach via atomic force microscopy (AFM). The effect of temperature on the functionality of HB-PNIPAM-Van-S. aureus showed that the polymer-bacteria complex reduced the work done in removing bacterial aggregates at T > LCST (p 2.5 µm) increased (p 2.5 µm) compared to S. aureus aggregates only. Here, we present the first study using AFM to assess the reversible mechanical impact of a thermo-active polymer-binding bacteria on a natural corneal surface.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje