Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay

Autor: Loredana Fiorentino, Michele Cavalera, Stefano Menini, Valentina Marchetti, Maria Mavilio, Marta Fabrizi, Francesca Conserva, Viviana Casagrande, Rossella Menghini, Paola Pontrelli, Ivan Arisi, Mara D'Onofrio, Davide Lauro, Rama Khokha, Domenico Accili, Giuseppe Pugliese, Loreto Gesualdo, Renato Lauro, Massimo Federici
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: EMBO Molecular Medicine, Vol 5, Iss 3, Pp 441-455 (2013)
Druh dokumentu: article
ISSN: 1757-4676
1757-4684
DOI: 10.1002/emmm.201201475
Popis: Abstract ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3−/− mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3−/− mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re‐expression of Timp3 in Timp3−/− mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy.
Databáze: Directory of Open Access Journals