Existence of positive solutions for p(x)-Laplacian problems

Autor: Horieh Ghorbani, Ghasem A. Afrouzi
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: Electronic Journal of Differential Equations, Vol 2007, Iss 177, Pp 1-9 (2007)
Druh dokumentu: article
ISSN: 1072-6691
Popis: We consider the system of differential equations $$displaylines{ -Delta_{p(x)} u=lambda [g(x)a(u) + f(v)] quadhbox{in }Omegacr -Delta_{q(x)} v=lambda [g(x)b(v) + h(u)] quadhbox{in }Omegacr u=v= 0 quadhox{on } partial Omega }$$ where $p(x) in C^1(mathbb{R}^N)$ is a radial symmetric function such that $sup| abla p(x)| < infty$, $1 < inf p(x) leq sup p(x) < infty$, and where $-Delta_{p(x)} u = -{ m div}| abla u|^{p(x)-2} abla u$ which is called the $p(x)$-Laplacian. We discuss the existence of positive solution via sub-super-solutions without assuming sign conditions on $f(0),h(0)$.
Databáze: Directory of Open Access Journals