Proper orthogonal decomposition analysis of vortex shedding behind a rotating circular cylinder

Autor: Dol Sharul Sham
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: EPJ Web of Conferences, Vol 114, p 02019 (2016)
Druh dokumentu: article
ISSN: 2100-014X
DOI: 10.1051/epjconf/201611402019
Popis: Turbulence studies were made in the wake of a rotating circular cylinder in a uniform free stream with the objective of describing the patterns of the vortex shedding up to suppression of the periodic vortex street at high velocity ratios, λ. The results obtained in the present study establish that shedding of Kármán vortices in a rotating circular cylinder-generated wake is modified by rotation of the cylinder. Alternate vortex shedding is highly visible when λ < 2.0 although the strength of the separated shear layers differ due to the rotation of the cylinder. The spectral density in the wakes indicate significant changes at λ = 2.0. The results indicate that the rotation of the cylinder causes significant disruption in the structure of the flow. Alternate vortex shedding is weak, distorted and close to being suppressed at λ = 2.0. It is clear that flow asymmetries will weaken vortex shedding, and when the asymmetries are significant enough, total suppression of a periodic street occurs. Particular attention was paid to the decomposition of the flow using Proper Orthogonal Decomposition (POD). By analyzing this decomposition with the help of Particle Image Velocimetry (PIV )data, it was found that large scales contribute to the coherent motion. Vorticity structures in the modes become increasingly irregular with downstream distance, suggesting turbulent interactions are occurring at the more downstream locations, especially when the cylinder rotates.
Databáze: Directory of Open Access Journals