PL-Genus of surfaces in homology balls

Autor: Jennifer Hom, Matthew Stoffregen, Hugo Zhou
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Forum of Mathematics, Sigma, Vol 12 (2024)
Druh dokumentu: article
ISSN: 2050-5094
DOI: 10.1017/fms.2023.126
Popis: We consider manifold-knot pairs $(Y,K)$ , where Y is a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface $\Sigma $ in a homology ball X, such that $\partial (X, \Sigma ) = (Y, K)$ can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from $(Y, K)$ to any knot in $S^3$ can be arbitrarily large. The proof relies on Heegaard Floer homology.
Databáze: Directory of Open Access Journals