Laser debonding of ultrathin occlusal veneers fabricated from different CAD/CAM ceramic materials

Autor: Nourhan Ali El-Sheikh, Marwa Mohamad Wahsh, Ghada Abdelfattah Hussein
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: BMC Oral Health, Vol 24, Iss 1, Pp 1-9 (2024)
Druh dokumentu: article
ISSN: 1472-6831
DOI: 10.1186/s12903-024-04314-6
Popis: Abstract Background Erbium lasers safely offer the possibility of reuse for debonded restorations. Since these lasers have a high affinity for water molecules, they are absorbed by resin cement causing explosive ablation of the cement and thus, the restoration debonds. The efficiency of this process depends on many factors, including the ceramic type, its chemical composition and thickness. Therefore, this study was designed to test the time taken to debond ultrathin occlusal veneers made of three types of milled ceramic materials and evaluate the integrity of these restorations after debonding. Methods Three ceramic types were evaluated in this study: lithium disilicate (IPS Emax CAD), highly condensed lithium disilicate (GC initial®LiSi), and translucent zirconia (Katana zirconia STML). Each group consisted of 8 occlusal veneers of 0.5 mm thickness. The samples were cemented to the occlusal surfaces of the upper molar teeth. An Er; Cr: YSGG laser was applied to the occlusal veneers using the scanning method, and time until debonding was calculated. The debonded samples were then inspected under a stereomicroscope for possible damage. Numerical data are presented as the mean with 95% confidence interval (CI), standard deviation (SD), minimum (min.) and maximum (max.) values. Normality and variance homogeneity assumptions were confirmed using Shapiro-Wilk’s and Levene’s tests, respectively. Data were normally distributed and were analyzed using one-way ANOVA followed by Tukey’s post hoc test. The significance level was set at p
Databáze: Directory of Open Access Journals