Autor: |
Malvina Marchese, María Dolores Martínez-Miranda, Jens Perch Nielsen, Michael Scholz |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Financial Innovation, Vol 10, Iss 1, Pp 1-16 (2024) |
Druh dokumentu: |
article |
ISSN: |
2199-4730 |
DOI: |
10.1186/s40854-024-00657-9 |
Popis: |
Abstract The availability of many variables with predictive power makes their selection in a regression context difficult. This study considers robust and understandable low-dimensional estimators as building blocks to improve overall predictive power by optimally combining these building blocks. Our new algorithm is based on generalized cross-validation and builds a predictive model step-by-step from a simple mean to more complex predictive combinations. Empirical applications to annual financial returns and actuarial telematics data show its usefulness in the financial and insurance industries. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|