Robustifying and simplifying high-dimensional regression with applications to yearly stock return and telematics data

Autor: Malvina Marchese, María Dolores Martínez-Miranda, Jens Perch Nielsen, Michael Scholz
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Financial Innovation, Vol 10, Iss 1, Pp 1-16 (2024)
Druh dokumentu: article
ISSN: 2199-4730
DOI: 10.1186/s40854-024-00657-9
Popis: Abstract The availability of many variables with predictive power makes their selection in a regression context difficult. This study considers robust and understandable low-dimensional estimators as building blocks to improve overall predictive power by optimally combining these building blocks. Our new algorithm is based on generalized cross-validation and builds a predictive model step-by-step from a simple mean to more complex predictive combinations. Empirical applications to annual financial returns and actuarial telematics data show its usefulness in the financial and insurance industries.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje