Autor: |
Xinyang Zhang, Bar Hen, Alexander Palevski, Aharon Kapitulnik |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
npj Quantum Materials, Vol 6, Iss 1, Pp 1-8 (2021) |
Druh dokumentu: |
article |
ISSN: |
2397-4648 |
DOI: |
10.1038/s41535-021-00329-2 |
Popis: |
Abstract Many experiments investigating magnetic-field tuned superconductor-insulator transition (H-SIT) often exhibit low-temperature resistance saturation, which is interpreted as an anomalous metallic phase emerging from a ‘failed superconductor’, thus challenging conventional theory. Here we study a random granular array of indium islands grown on a gateable layer of indium-oxide. By tuning the intergrain couplings, we reveal a wide range of magnetic fields where resistance saturation is observed, under conditions of careful electromagnetic filtering and within a wide range of linear response. Exposure to external broadband noise or microwave radiation is shown to strengthen the tendency of superconductivity, where at low field a global superconducting phase is restored. Increasing magnetic field unveils an ‘avoided H-SIT’ that exhibits granularity-induced logarithmic divergence of the resistance/conductance above/below that transition, pointing to possible vestiges of the original emergent duality observed in a true H-SIT. We conclude that anomalous metallic phase is intimately associated with inherent inhomogeneities, exhibiting robust behavior at attainable temperatures for strongly granular two-dimensional systems. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|