Autor: |
Adam Olesiński, Zbigniew Piotrowski |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Sensors, Vol 23, Iss 14, p 6480 (2023) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s23146480 |
Popis: |
Wideband spectrum sensing plays a crucial role in various wireless communication applications. Traditional methods, such as energy detection with thresholding, have limitations like detecting signals with low signal-to-noise ratio (SNR). This article proposes a novel deep learning-based approach for RF signal detection in the wideband spectrum. The objective is to accurately estimate the noise distribution in a wideband radio spectrogram and improve the detection performance by substracting it. The proposed method utilizes convolutional neural networks to analyze radio spectrograms. Model evaluation demonstrates that the RFROI-CNN approach outperforms the traditional energy detection with thresholding method by achieving significantly better detection results, even up to 6 dB, and expanding the capabilities of wideband spectrum sensing systems. The proposed approach, with its precise estimation of noise distribution and consideration of neighboring signal power values, proves to be a promising solution for RF signal detection. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|