Rapidly mixing chain and perfect sampler for logarithmic separable concave distributions on simplex

Autor: Shuji Kijima, Tomomi Matsui
Jazyk: angličtina
Rok vydání: 2005
Předmět:
Zdroj: Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AD,..., Iss Proceedings (2005)
Druh dokumentu: article
ISSN: 1365-8050
DOI: 10.46298/dmtcs.3374
Popis: In this paper, we are concerned with random sampling of an n dimensional integral point on an $(n-1)$ dimensional simplex according to a multivariate discrete distribution. We employ sampling via Markov chain and propose two "hit-and-run'' chains, one is for approximate sampling and the other is for perfect sampling. We introduce an idea of alternating inequalities and show that a logarithmic separable concave function satisfies the alternating inequalities. If a probability function satisfies alternating inequalities, then our chain for approximate sampling mixes in $\textit{O}(n^2 \textit{ln}(Kɛ^{-1}))$, namely $(1/2)n(n-1) \textit{ln}(K ɛ^{-1})$, where $K$ is the side length of the simplex and $ɛ (0
Databáze: Directory of Open Access Journals