Autor: |
Sang Ik Park, Younghee Yim, Jung Bin Lee, Hye Shin Ahn |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-75011-1 |
Popis: |
Abstract Purpose: We aimed to evaluate whether the deep-learning (DL) accelerated diffusion weighted image (DWI) is clinically feasible for evaluating patients with acute neurologic symptoms, regarding its shorter study time and acceptable image quality. Materials and methods: In this retrospective study, brain images obtained at DWI with a b-value of 0 s/mm2 and DWI with a b-value of 1000 s/mm2 (DWI 1000) from 321 consecutive patients with acute stroke-like symptom were reconstructed with and without DL algorithm. We compare the diagnostic performance between DL-DWI and conventional DWI for detecting brain lesions, including acute infarction. We assessed the diagnostic accuracy of conventional DWI and DL-DWI and compared the results. Qualitative analysis based on image quality was assessed and compared using a five-point visual scoring system. Apparent diffusion coefficients (ADCs) from DWI with and without DL were also compared. Results: The mean acquisition time for the DL-DWI (49 s) was significantly shorter (P |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|