Stochastic gradient descent optimisation for convolutional neural network for medical image segmentation

Autor: Nagendram Sanam, Singh Arunendra, Harish Babu Gade, Joshi Rahul, Pande Sandeep Dwarkanath, Ahammad S. K. Hasane, Dhabliya Dharmesh, Bisht Aadarsh
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Open Life Sciences, Vol 18, Iss 1, Pp 317-24 (2023)
Druh dokumentu: article
ISSN: 2391-5412
DOI: 10.1515/biol-2022-0665
Popis: In accordance with the inability of various hair artefacts subjected to dermoscopic medical images, undergoing illumination challenges that include chest-Xray featuring conditions of imaging acquisi-tion situations built with clinical segmentation. The study proposed a novel deep-convolutional neural network (CNN)-integrated methodology for applying medical image segmentation upon chest-Xray and dermoscopic clinical images. The study develops a novel technique of segmenting medical images merged with CNNs with an architectural comparison that incorporates neural networks of U-net and fully convolutional networks (FCN) schemas with loss functions associated with Jaccard distance and Binary-cross entropy under optimised stochastic gradient descent + Nesterov practices. Digital image over clinical approach significantly built the diagnosis and determination of the best treatment for a patient’s condition. Even though medical digital images are subjected to varied components clarified with the effect of noise, quality, disturbance, and precision depending on the enhanced version of images segmented with the optimised process. Ultimately, the threshold technique has been employed for the output reached under the pre- and post-processing stages to contrast the image technically being developed. The data source applied is well-known in PH2 Database for Melanoma lesion segmentation and chest X-ray images since it has variations in hair artefacts and illumination. Experiment outcomes outperform other U-net and FCN architectures of CNNs. The predictions produced from the model on test images were post-processed using the threshold technique to remove the blurry boundaries around the predicted lesions. Experimental results proved that the present model has better efficiency than the existing one, such as U-net and FCN, based on the image segmented in terms of sensitivity = 0.9913, accuracy = 0.9883, and dice coefficient = 0.0246.
Databáze: Directory of Open Access Journals