Popis: |
Abstract Background Diligent and correct laboratory diagnosis and up-front identification of risk factors for progression to severe disease are the basis for optimal management of malaria. Methods Febrile children presenting to the Medical Research Unit at the Albert Schweitzer Hospital (HAS) in Lambaréné, Gabon, were assessed for malaria. Giemsa-stained thick films for qualitative and quantitative diagnosis and enumeration of malaria pigment, or haemozoin (Hz)-containing leukocytes (PCL) were performed, and full blood counts (FBC) were generated with a Cell Dyn 3000® instrument. Results Compared to standard light microscopy of Giemsa-stained thick films, diagnosis by platelet count only, by malaria pigment-containing monocytes (PCM) only, or by pigment-containing granulocytes (PCN) only yielded sensitivities/specificities of 92%/93%; 96%/96%; and 85%/96%, respectively. The platelet count was significantly lower in children with malaria compared to those without (p < 0.001), and values showed little overlap between groups. Compared to microscopy, scatter flow cytometry as applied in the Cell-Dyn 3000® instrument detected significantly more patients with PCL (p < 0.01). Both PCM and PCN numbers were higher in severe versus non-severe malaria yet reached statistical significance only for PCN (p < 0.0001; PCM: p = 0.14). Of note was the presence of another, so far ill-defined pigment-containing group of phagocytic cells, identified by laser-flow cytometry as lymphocyte-like gated events, and predominantly found in children with malaria-associated anaemia. Conclusion In the age group examined in the Lambaréné area, platelets are an excellent adjuvant tool to diagnose malaria. Pigment-containing leukocytes (PCL) are more readily detected by automated scatter flow cytometry than by microscopy. Automated Hz detection by an instrument as used here is a reliable diagnostic tool and correlates with disease severity. However, clinical usefulness as a prognostic tool is limited due to an overlap of PCL numbers recorded in severe versus non-severe malaria. However, this is possibly because of the instrument detection algorithm was not geared towards this task, and data lost during processing; and thus adjusting the instrument's algorithm may allow to establish a meaningful cut-off value. |