LK-Index: A Learned Index for KNN Queries

Autor: Yongxin Peng
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: IEEE Access, Vol 12, Pp 103096-103103 (2024)
Druh dokumentu: article
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2024.3433524
Popis: The k-Nearest Neighbor (kNN) search is a crucial problem in database and data mining, especially in high-dimensional space. However, traditional kNN algorithms based on distance metrics and brute-force search often have low search efficiency and accuracy, and high computational complexity when dealing with large-scale high-dimensional datasets. These limitations have made them a bottleneck in practical applications. Inspired by the recently learned index that replaces B-tree with machine learning models, I propose a method for kNN search based on a learned index, named LK-index. Initially, a conventional tree-based index is created to process queries. The tree index is then utilized to find the k-nearest neighbor points, and the neural network is trained to act as a learned index. Finally, the actual k-nearest neighbors are obtained by computing the potential k-nearest neighbor points. Experiments conducted on synthetic and real-world datasets demonstrate that the LK-index yields certain advantages regarding search accuracy and time consumption.
Databáze: Directory of Open Access Journals