Autor: |
Fumiya Tojo, Manabu Ishizaki, Shigeru Kubota, Masato Kurihara, Fumihiko Hirose, Bashir Ahmmad |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Energies, Vol 13, Iss 14, p 3738 (2020) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en13143738 |
Popis: |
Pure cadmium sulfide and histidine decorated cadmium sulfide nanocomposites are prepared by the hydrothermal or solvothermal method. Scanning electron microscopy (SEM) analysis shows that the particle sizes of pure cadmium sulfide (pu/CdS) and histidine decorated cadmium sulfide prepared by the hydrothermal method (hi/CdS) range from 0.75 to 3.0 μm. However, when a solvothermal method is used, the particle size of histidine decorated cadmium sulfide (so/CdS) ranges from 50 to 300 nm. X-ray diffraction (XRD) patterns show that all samples (pu/CdS, hi/CdS and so/CdS) have a hexagonal wurtzite crystal structure but so/CdS has a poor crystallinity compared to the others. The as-prepared samples are applied to photocatalytic hydrogen production via water splitting and the results show that the highest H2 evolution rate for pu/CdS and hi/CdS are 1250 and 1950 μmol·g−1·h−1, respectively. On the other hand, the so/CdS sample has a rate of 6020 μmol·g−1·h−1, which is about five times higher than that of the pu/CdS sample. The increased specific surface area of so/CdS nanoparticles and effective charge separation by histidine molecules are attributed to the improved H2 evolution. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|