Autor: |
Dongxing Fu, Xiaowei Xu, Zhibing Zhao |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Electronic Research Archive, Vol 30, Iss 9, Pp 3337-3350 (2022) |
Druh dokumentu: |
article |
ISSN: |
2688-1594 |
DOI: |
10.3934/era.2022169?viewType=HTML |
Popis: |
Let $ A/S $ be a ring extension with $ S $ commutative. We prove that $ \omega{\otimes}_SA_A $ is a generalized tilting module if $ \omega_S $ is a generalized tilting module. In this case, we obtain that $ ^\bot \omega $-resol.dim$ _S(M) $ and $ ^\bot (\omega\otimes_SA) $-resol.dim$ _A(M) $ are identical for any $ A $-module $ M $. As an application, we show that $ S $ satisfies gorenstein symmetric Conjecture if and only if so does $ A $. Furthermore, we introduce the concept of $ ^\bot\omega $-Gorenstein projective modules, and we obtain that the relative Gorenstein projectivity is invariant under Frobenius extensions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|