Thermal Evaporation Synthesis and Properties of ZnO Nano/Microstructures Using Carbon Group Elements as the Reducing Agents
Autor: | Du XB, Lv H, Sang DD, Li HD, Li DM, Zou GT |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Nanoscale Research Letters, Vol 5, Iss 3, Pp 620-624 (2010) |
Druh dokumentu: | article |
ISSN: | 1931-7573 1556-276X |
Popis: | Abstract ZnO nano/microstructures have been formed by thermal evaporation method using ZnO powders mixed with carbon group elements (C, Si, Ge, Sn, or Pb) as the reducing agent. For cases of mixed precursors of ZnO/C, ZnO/Si, and ZnO/Ge, the pure ZnO nano/microstructures are realized, while for ZnO/Sn (ZnO/Pb) systems, the phase of Pb2O3(Zn2SnO4) generally are represented in the ZnO products. The appearance of Pb2O3(Zn2SnO4) is attributed to the lower melting point and higher vapor pressure of Sn (Pb) in the heating and evaporation processes. The morphologies and sizes of the products are controlled by adjusting the growth regions and/or introducing gaseous argon. Room temperature (RT) photoluminescence spectra indicate that the intensity (peak position) of the ultraviolet emission is increased (redshift) due to the existence of Zn2SnO4 phase in the ZnO products. The Pb2O3(Zn2SnO4) phase in ZnO nano/microstructures plays a important role in enhancing the saturation magnetizations of RT ferromagnetism with respect to the case of pure ZnO products fabricated by the precursor of mixed ZnO and graphite. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |