Excited state non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential

Autor: Simon Axelrod, Eugene Shakhnovich, Rafael Gómez-Bombarelli
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-30999-w
Popis: The authors introduce a diabatic neural network to accelerate excitedstate, non-adiabatic simulations of azobenzene derivatives. The model predicts quantum yields for unseen species that are correlated with experiment.
Databáze: Directory of Open Access Journals