Autor: |
Simon Axelrod, Eugene Shakhnovich, Rafael Gómez-Bombarelli |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-022-30999-w |
Popis: |
The authors introduce a diabatic neural network to accelerate excitedstate, non-adiabatic simulations of azobenzene derivatives. The model predicts quantum yields for unseen species that are correlated with experiment. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|