Diameter problems for univalent functions with quasiconformal extension
Autor: | Paul Deiermann |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1993 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 16, Iss 4, Pp 679-686 (1993) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 01611712 |
DOI: | 10.1155/S0161171293000857 |
Popis: | This paper utilizes the method of extremal length to study several diameter problems for functions conformal outside of a disc centered at the origin, with a standard normalization, which possess a quasiconformal extension to a ring subdomain of this disc. Known results on the diameter of a complementary component of the image domain of a univalent function are extended. Applications to the transfinite diameters of families of non-overlapping functions and an extension of the Koebe one-quarter theorem are included. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |