ADAM17-Mediated Ectodomain Shedding of Toll-Like Receptor 4 as a Negative Feedback Regulation in Lipopolysaccharide-Activated Aortic Endothelial Cells

Autor: Won Seok Yang, Jin Ju Kim, Mee Jeong Lee, Eun Kyoung Lee, Su-Kil Park
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Cellular Physiology and Biochemistry, Vol 45, Iss 5, Pp 1851-1862 (2018)
Druh dokumentu: article
ISSN: 1015-8987
1421-9778
DOI: 10.1159/000487876
Popis: Background/Aims: Lipopolysaccharide (LPS)-activated monocytes/macrophages develop endotoxin tolerance in part by reducing cell surface toll-like receptor 4 (TLR4) through cluster of differentiation 14 (CD14)-dependent endocytosis. In case of endothelial cells, CD14 is expressed in low copy numbers as compared with monocytes/macrophages. Thus, we explored how endothelial cells regulate TLR4 expression after LPS stimulation. Methods: Cultured human aortic endothelial cells (HAECs) were treated with LPS. TLR4 expression was analyzed by Western blot analysis and immunofluorescence staining. A disintegrin and metalloprotease 17 (ADAM17) activity was measured using a fluorescent substrate. Results: TLR4 in cell lysate began to decrease within 30 min of LPS treatment with a maximal reduction at 2 h, and it was accompanied by an increase of N-terminal fragment of TLR4 in culture supernatant, indicating ectodomain shedding of the receptor. LPS activated p38 mitogen-activated protein kinase (p38 MAPK) and ADAM17, while LPS-induced ADAM17 activation was inhibited by SB203580, a p38 MAPK inhibitor. LPS-induced ectodomain shedding of TLR4 was attenuated by siRNA depletion of ADAM17 as well as TAPI-2 (an inhibitor of ADAM family) and SB203580. LPS pretreatment resulted in a blunted response of p38 MAPK activation to further LPS stimulation. In the cells depleted of ADAM17, LPS-induced p38 MAPK activation was prolonged and LPS-induced intercellular adhesion molecule-1 expression was potentiated. Conclusion: HAECs respond to LPS by rapid shedding of the ectodomain of TLR4 and thereby reduce the responsiveness to subsequent LPS exposure. ADAM17, downstream of p38 MAPK, is implicated in the ectodomain cleavage of TLR4.
Databáze: Directory of Open Access Journals