Autor: |
Fawaz W. Alsaade, Qijia Yao, Mohammed S. Al-zahrani, Ali S. Alzahrani, Hadi Jahanshahi |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 5, p 1726 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22051726 |
Popis: |
In this paper, a neural adaptive fault-tolerant control scheme is proposed for the integrated attitude and position control of spacecraft proximity operations in the presence of unknown parameters, disturbances, and actuator faults. The proposed controller is made up of a relative attitude control law and a relative position control law. Both the relative attitude control law and relative position control law are designed by adopting the neural networks (NNs) to approximate the upper bound of the lumped unknowns. Benefiting from the indirect neural approximation, the proposed controller does not need any model information for feedback. In addition, only two adaptive parameters are required for the indirect neural approximation, and the online calculation burden of the proposed controller is therefore significantly reduced. Lyapunov analysis shows that the overall closed-loop system is ultimately uniformly bounded. The proposed controller can ensure the relative attitude, angular velocity, position, and velocity stabilize into the small neighborhoods around the origin. Lastly, the effectiveness and superior performance of the proposed control scheme are confirmed by a simulated example. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|